

INTERCONNECTION PROTECTION SETTINGS & COMMISSIONING

LIMITATION OF LIABILITY AND DISCLAIMER

This document is not a replacement for electrical codes or other applicable standards.

This document is not intended or provided as a design specification or as an instruction manual.

The DER owner, employees or agents recognize that they are, at all times, solely responsible for the generator plant design, construction, operation and maintenance.

FortisAlberta Inc. (FAI), and any person employed on its behalf, makes no warranties or representations of any kind with respect to the DER requirements contained in this document, including, without limitation, its quality, accuracy, completeness or fitness for any particular purpose, and FAI will not be liable for any loss or damage arising from the use of this document, any conclusions a user derives from the information in this document or any reliance by the user on the information it contains. FAI reserves the right to amend any of the requirements at any time. Any person wishing to make a decision based on the content of this document should consult with FAI prior to making any such decision.

FORTIS INTERCONNECTION PROTECTION SETTINGS & COMMISSIONING

SECTION 1: Protection Settings Validation

Interconnection Protective Equipment Nameplate Information

Use a separate form for each piece of equipment providing interconnection protective functions. For system protection requirements, review FortisAlberta's *DER-02: Technical Interconnection Requirements Standard Note: Individual inverters only require certification*

FortisAlberta Pro	ject #			Date			
FortisAlberta FortisAlberta FortisAlberta FortisAlberta FortisAlberta FortisAlberta FortisAlberta FortisAlberta	eeder mber			Facility Name			
Facility Status	New		Up	grade		Existing	
Aggregate Generation Capacity		Generatio Typ			Volt	Facility Nominal age (VAC)	
Device Identifier (as per SLD)				Associated ay Identifier (as per SLD)			
Relay Manufacturer				Relay Model			
DER certified to UL1741 SB or more recent				Ма	chine c	ertified to UL2200	

Overcurrent Trip Settings

INTERCONNECTION PROTECTION SETTINGS & COMMISSIONING

Rev. 08

Trip Direction (FTS to DER) (DER to FTS)

Provide below the protection settings that have been implemented or are intended to be utilized for the interconnection protection. *Note: Always verify upstream coordination with FortisAlberta.*

(50/51) Overcurrent Trip Settings: Use 25kV / 14.4kV as the base

Current Pic (Amps) (<u>Mus</u> <u>between 600A anc</u>	st be			CT	r Ratio					CT Ratio
Curve	Гуре	Phase				Ground				
Time Dial/Mod	difier	РЧ				Gro				
Instantaneous (Ar	Trip nps)									
(67/67N/32R) Dire	ction	al Ov	vercurrent / Revers	se Po	ower Trip	o Set	tings: <mark>Us</mark>	e 25k	V / 14.4kV	as the base
Element Pickup (Amps or Watts)										
Curve Type										
Time Dial/Modifier	7P			67N				32R		
Instantaneous Trip (Amps)	9			9				r.		

TCC coordination and description with FortisAlberta devices (To be completed by Fortis Alberta):

Assessment Completed By:

Overcurrent Settings Approved:

 \Box Yes $\ \Box$ No

Required Protection Settings

The following are the **required** protection settings and maximum clearing times for any interconnection to FortisAlberta's distribution system. Any variance to the below settings must be approved by FortisAlberta. If settings cannot be met, please provide justification in the comments section.

Frequency Protection

(81U) Under-Frequency Trip		(810) Over-Frequency Trip		
Required Setting Clearing time		Required Setting	Maximum Clearing time	
UF1 = 58.5 Hz	300sec	OF1 = 61.2 Hz	300sec	
UF2 = 56.5 Hz	0.16sec	OF2 = 62.0 Hz	0.16sec	

Voltage Protection

(59) Over-Voltage Trip				
Required Setting	Maximum Clearing time			
OV1 = 106%	45sec			
OV2 = 110%	2sec			
OV3 = 120%	0.16sec			

(27) Under-Voltage Trip					
Inverter-Based Generation		Machine-Based Generation			
Required Maximum Setting time		Required Setting	Maximum Clearing time		
UV1 = 88%	10sec	UV1 = 88%	2sec		
UV2 = 45%	0.16sec	UV2 = 45%	0.16sec		

Any variances to the required voltage settings shall be specified here:

e.g., if FortisAlberta mandates an OV4 setting of 106.5% at 0.5 seconds then it shall be specified in this box.

Required Setting	Maximum Clearing time

FORTIS ALBERTA

System Synchronizing

(25) Synchronizing				
Requirements	< 0.5 MVA	0.5 – 1.5 MVA	> 1.5 MVA	
Frequency Difference	0.3 Hz	0.2 Hz	0.1 Hz	
Voltage Difference	10 %	5 %	3 %	
Phase Angle Difference	20 Degrees	15 Degrees	10 Degrees	

Anti-Islanding

Anti-Islanding				
Requirements				
Open P	hase Detection	- < 2 secor	a da	
Loss o	f Utility Voltage	< 2 Seco	lus	
	elay after Utility oltage Returns	≥ 5 minu	tes	
	Dead Bus	No star	t	
Communication (upon detection	nication Failure of comm loss)	< 0.6 seco	onds	
DER F	Facility Metho	d of Detection		
Active		Passive		
Islanding Dete (E.g., Sandia Fre Active Frequenc Anti-Islanding Sch	equency Shift, y rift, or other)	on:		

Use the comment section for any variance to the tables.

Based on the criteria in DER-02, please indicate below the Anti-Islanding detection method and scheme.

Refer to DER-02 Annex A for islanding detection methods.

Voltage/Frequency Ride Through

Ride Through Requirements

□ Requirements outlined in Section 7.2 in Fortis Alberta's DER-02 have been met.

Voltage Ride Through Settings (Machine Based)

Voltage Range (%)	Maximum Response Time	Minimum Ride Through
V ≥ 120	0.16sec	N/A
117.5 < V < 120	N/A	0.2sec
115 < V ≤ 117.5	N/A	0.5sec
110 < V ≤ 115	N/A	1sec
88 ≤ V ≤ 110	N/A	Infinite
70 ≤ V < 88	N/A	$T_{VTR}(sec) = 0.7 + 4(V - 0.7pu)$
50 ≤ V < 70	N/A	0.16
V < 50 0.16		N/A

Frequency Ride Through Settings (Machine Based)

Frequency Range (Hz)	Minimum Ride Through
f > 62	N/A
61.2 < f ≤ 62	299sec
58.8 ≤ f ≤ 61.2	Infinite
57 ≤ f < 58.8	299sec
F < 57	N/A

Ride through settings for inverter based DERs are confirmed by the manufacturer and certification. Machine based DERs are required to implement ride through settings.

NOTE: both ride through settings and maximum tripping times must be adhered to together.

Breaker Failure Protection

Breaker Failure (BF)					
Requirements					
FortisAlbert	a to Review BF Scheme				
Breaker Failure (upon detection of a BF	≤ 0.3 second (pick-up)				
condition)	< 2 seconds (trip of secondary isolation point)				
Breaker Failure (BF) Sche	me Description:				

Breaker Failure protection shall be indicated on the *Electrical Single Line Diagram* with notes describing the protection philosophy.

Measurement Device Accuracy for Protection

Меа	asurement Device Accu	iracy			
Requirements					
FortisAlberta to	Review Measurement De Protection				
Parameter	Minimum Accuracy	GFO Measurement Device Accuracy			
Voltage (RMS)	±1% V _{nom}				
Frequency	10mHz				
Active Power	± 5% rated apparent power				
Reactive Power	± 5% rated apparent power				
Time	± 1% of measured duration				
Additional notes on protection:	on measurement device a	ccuracy for			

The measurement accuracy requirements for the PCC device shall be used.

Transformer Inrush/Rapid Voltage Change

Rapid Voltage Change					
Я	Requirements				
FortisAlberta to Revie	w DER site Rapid Voltage Change				
RVC Study Complete and accepted by FortisAlberta:					
Rapid Voltage Change Mi	tigation Description (if applicable):				

Transformer inrush/RVC mitigation shall be indicated on the *Electrical Single Line Diagram* with notes describing the philosophy.

Transformer inrush/RVC results and graphs shall be included in the PQ Post-Energization Compliance report after the commissioning.

Power Plant Controller

DER Power Plant Controller (PPC) Verification		
Is a PPC being used? (it is recommended that a PPC be used at the PCC for any DERs greater than 249kW)	□ YES □ NO	
Power Plant Controller Field Verification Plan complete?	□ YES □ NO	
FortisAlberta currently requires constant power factor control for DERs. Power Plant Controllers shall be able to accommodate all control requirements (e.g., Volt-Var control, Volt-Watt, etc.) outlined in DER-02 should another control mode be requested.		

Additional Comments / Protection Variances:

The following items must be attached/completed with this submission:

Electrical Single Line Diagram: Please ensure the most up to date issue for construction (IFC) Electrical SLD of the facility corresponds to this submitted IPSC document, meeting *Section 5.1* of FortisAlberta's DER-02. The SLD shall indicate the <u>required protection elements</u> and clearly outline the breaker failure scheme as indicated in *Section 7.4* in Fortis Alberta's DER-02.

All responsible individuals signing and stamping results for the DER owner/facility certify that the design of electrical protection and control systems for this generating facility complies with all applicable standards, including FortisAlberta DER-02, FortisAlberta PQ-SPEC-01 and applicable interconnection standards.

$\hfill\square$ Description of anti-islanding detection method and scheme

Please provide the manufacturer datasheet for the anti-islanding scheme. See *Section 7.2* in Fortis Alberta's DER-02 for required information.

□ Description Ride-through Settings

Please provide the ride-through settings with submission as per Section 7.2 in Fortis Alberta's DER-02.

Provided by:	Reviewed by:	
Power Producer (Name / Company)	FortisAlberta	
Title (P.Eng. Required with stamp)	Title	
Signature	Signature	
Date	Date	
INTERCONNECTION PROTECTION SETTING	S & COMMISSIONING	10

SECTION 2: Load Protection Performance and Equipment Commissioning

Load Protection Settings and Testing

Please provide in the table below the current settings of each of the system protection elements (section outlined in red). If an element differs from FortisAlberta's requirement provide justification to the variance in the additional comments section. If the element is not applicable to the system indicate in the table as nonapplicable and provide a comment stating why it is not required.

Interconnection Protection Validation: Refers to the testing of the protection elements / schemes and system equipment during start-up commissioning or maintenance activities. Indicate in the table below the period at which the interconnection protection settings have been tested. All commissioning validation testing reports and procedures must be made available upon request from FortisAlberta.

Results given in Section 2 shall be the actual load test results and not the settings proposed.

Please refer to FortisAlberta's DER-02: Technical Interconnection Requirements Standard for system requirements.

FortisAl	berta Project #	Facility Name			Date		
		Int	erconnection Protection Vali	idati	on		
New	Commissioning		□ Testing Completed ≤ 3 Years □ Testing Completed > 3 Y				
	\$	Syste	m Protection Elements and V	/alic	dation		
			Se	etting	gs		
Prot	ection Elements		FortisAlberta Requirement		Facility Intercon	nection Setting	js
			Overcurrent (non-directiona	I)			
51	Phase Time Overcurrent		Unique to System Configuration		Fill out Separate Overcurrent Trip Table FortisAlberta DER-02, <i>Section 7.5</i>		
50	Phase Instantaneous						.5
			Directional (non-export)				
67	Phase Directional Overcurrent	10	% of Total Generation Capacity		Fill out Sep	arate Table	
67N	Ground / Neutral Directional Overcurrent	10	% of Total Generation Capacity		Fill out Sep	arate Table	
32R	Reverse Power	1	% of Total Generation Capacity		Fill out Sep	arate Table	

	Voltage					
		OV1 = 106 % Max. Clear Time = 45 sec	OV1 (%) = Actual Clear Time (sec) =			
	Over Veltere	OV1 = 110 % Max. Clear Time = 2 sec	OV2 (%) = Actual Clear Time (sec) =			
59	59 Over Voltage	OV1 = 120 % Max. Clear Time = 0.16 sec	OV3 (%) = Actual Clear Time (sec) =			
		Alternate OV (if applicable) = Max. Clear Time (sec) =	Alternate OV (%) = Actual Clear Time (sec) =			
27	Under Voltage Inverter-Based (I) Machine-Based (M)	UV1 = 88% Max. Clear Time = (I) 10 sec (M) 2 sec	UV1 (%) = Actual Clear Time (sec) =			
Mac		UV2 = 45 % Max. Clear Time = 0.16 sec	UV2 (%) = Actual Clear Time (sec) =			
		Frequency				
81O	Over Frequency	OF1 = 61.2 Hz Max. Clear Time = 300 sec OF2 = 62.0 Hz	OF1 (Hz) = Actual Clear Time (sec) = OF2 (Hz) =			
		Max. Clear Time = 0.16 sec	Actual Clear Time (sec) =			
81U	Under Frequency	UF1 = 58.5 Hz Max. Clear Time = 300 sec	UF1 (Hz) = Actual Clear Time (sec) =			
81U	Under Frequency	UF2 = 56.5 Hz Max. Clear Time = 0.16 sec	UF2 (Hz) = Actual Clear Time (sec) =			

System Synchronizing (Not required for inverters certified to UL1741 or equivalent) (Required in Section 2 if performing system sync. at the PCC)				
	Frequency Difference	0.1 - 0.3 Hz	FD =	
25	Voltage Difference	3 - 10 %	VD =	
	Phase Angle Difference	10 - 20 Degrees	AD =	
	Anti-Islanding	(Not required for inverters certified to	o UL1741 or equivalent)	
Loss	of Utility Voltage		Actual Clear Time (sec) =	
Open Phase		Max. Clear Time ≤ 2 sec	Actual Clear Time (sec) =	
Transfer-Trip			Actual Clear Time (sec) =	
	Dead Bus	No Start		
Loss of Communication (upon detection of comm. loss)		Max. Clear Time ≤ 0.6 sec	Actual Clear Time (sec) =	
Breaker Failure (required in Section 3 if using inverter shut down for breaker failure)				
BF Detection		Pickup ≤ 0.3 sec	Pickup =	
Sec	Secondary Isolation Clear Time ≤ 2 sec		Actual Clear Time =	

(50/51) Overcurrent Trip: Use 25kV / 14.4kV as the base

Current Pickup (Amps)			
Curve Type	Ð	pun	
Time Dial/Modifier	Phase	Gro	
Instantaneous Trip (Amps)			
CT Ratio			

(67/67N/32R) Directional Overcurrent / Reverse Power Trip: Use 25kV / 14.4kV as the base

Element Pickup (Amps)			
Curve Type	67P	z	
Time	67	67N	
Dial/Modifier			
Instantaneous			
Trip (Amps)			
Element Pickup			
(Watts)	32R		
Time Delay	32		

Interconnection Equipment Testing

The DER Owner is responsible for the inspection, testing, and calibration of its equipment, at the PCC / PoC. Testing shall be conducted prior to the initial energization of the facility and on a periodic basis for maintenance purposes. Review DER-02, *Section 9.0* and CSA C22.3 No. 9: 20, *Section 8.5.2.1* for inspection and testing requirements.

The following interconnection equipment at the PCC / PoC shall be included in all testing, but not limited to:

- Interrupting / Isolation devices (i.e. Breaker, Recloser, Disconnect Switch)
- Instrumentation (i.e. Current / Voltage Transformers, Sensing Devices)
- Control Wiring
- Underground Cabling
- Main Power Transformers
- Protection Function Testing
- Interconnection SCADA DNP3 Mapping: Refer to DER-02, Annex 'A' for requirements and mapping

All commissioning validation testing reports and procedures must be made available upon request from FortisAlberta.

Refer to manufacturer guidelines for equipment testing and expected values. In the absence of the manufacturer's information, use the latest industry standards for testing equipment. Indicate below the testing period and the standard(s) used for testing.

INTERCONNECTION PROTECTION SETTINGS & COMMISSIONING

Interconnection Equipment Testing					
New Commissioning		Testing Completed ≤ 3 Years		Testing Completed > 3 Years	
Testing Standard(s) Applied					
(i.e. NETA ATS 2017, CSA					
C22.3 No 9, IEEE 1547.1)					

Additional Comments / Variances:

Testing Certification

Your signature below indicates that the information that has been provided is accurate and the testing of the protection and facility equipment aligns with the requirements in FortisAlberta's DER-02 standard. It also indicates that all testing results have been documented and are available upon request by FortisAlberta.

All responsible individuals signing and stamping results for the DER owner/facility certify that the electrical protection and control system for this generating facility complies with the design and all applicable performance standards, including FortisAlberta DER-02, FortisAlberta PQ-SPEC-01 and applicable interconnection standards.

Certified by:	Reviewed by (P&C):
Power Producer (name / company)	FortisAlberta
Title (P.Eng. Required with stamp)	Title
Signature	Signature
Date	Date

INTERCONNECTION PROTECTION SETTINGS & COMMISSIONING

SCADA APPROVALS & SITE WITNESSING

Device Approvals				
FAI SCADA department has put the DER PCC device into	□ YES □ NO	Device ID:		
production.	□ N/A			
FAI SCADA department has put	□ YES	Device ID:		
the FAI PCC device into				
production.	□ N/A			

Completed by (SCADA):

Site witnessed by (Field Technical Services):

FortisAlberta	FortisAlberta
Title	Title
Signature	Signature
Date	Date

SECTION 3: Generation Protection Performance and Equipment Commissioning

Generation Protection Settings and Testing

Please provide in the table below the current settings of each of the system protection elements (section outlined in red). If an element differs from FortisAlberta's requirement provide justification to the variance in the additional comments section. If the element is not applicable to the system indicate in the table as nonapplicable and provide a comment stating why it is not required.

Interconnection Protection Validation: Refers to the testing of the protection elements / schemes and system equipment during start-up commissioning or maintenance activities. Indicate in the table below the period at which the interconnection protection settings have been tested. All commissioning validation testing reports and procedures must be made available upon request from FortisAlberta.

Results given in Section 3 shall be the actual test results and not the settings proposed.

Please refer to FortisAlberta's DER-02: Technical Interconnection Requirements Standard for system requirements.

FortisAlberta Project #		Facility Name			Date		
Interconnection Protection Validation							
New Commissioning			Testing Completed ≤ 3 Years		Testing Co > 3 Ye		
System Protection Elements and Validation							
Protection Elements		Settings					
			FortisAlberta Requirement		Facility Interconnection Settings		
System Synchronizing (Not required for inverters certified to UL1741 or equivalent) (Required in Section 3 if not performing the system sync. at the PCC)							
	Frequency Difference		0.1 - 0.3 Hz		FD =		
25	Voltage Difference		3 - 10 %	١	VD =		
	Phase Angle Difference		10 - 20 Degrees	1	AD =		
Effective Grounding – Transient Overvoltage (TOV)							
Load Rejection Overvoltage (LROV)			Review Reference Material		Compliant with *PQ Repor		

Anti-Islanding (Not required for inverters certified to UL1741 or equivalent)					
Generator Start after Voltage Restoration	Block Start ≥ 300 sec	Start =			
Voltage Ride Through (Only applicable to machine based DERs)					
V (%) > 120	Clear Time ≤ 0.16 sec	Actual Clear Time (sec) =			
117.5 < V (%) ≤ 120	Clear Time ≥ 0.2 sec	Actual Clear Time (sec) =			
115 < V (%) ≤ 117.5	Clear Time ≥ 0.5 sec	Actual Clear Time (sec) =			
110 < V (%) ≤ 115	Clear Time ≥ 1 sec	Actual Clear Time (sec) =			
88 ≤ V (%) ≤ 110	NO TRIP				
70 ≤ V (%) < 88	Clear Time \geq 0.7 + 4(V - 0.7 pu)	Actual Clear Time (sec) =			
50 ≤ V (%) < 70	Clear Time ≥ 0.16 sec	Actual Clear Time (sec) =			
V (%) <50	Clear Time ≤ 0.16 sec	Actual Clear Time (sec) =			
Freque	Frequency Ride Through (Only applicable to machine based DERs)				
f > 62	Clear Time ≤ 0.16 sec	Actual Clear Time (sec) =			
61.2 < f ≤ 62	Clear Time ≥ 299 sec	Actual Clear Time (sec) =			
58.8 ≤ f ≤ 61.2	NO TRIP				
58.8 ≤ f ≤ 61.2 57 ≤ f < 58	NO TRIP Clear Time ≥ 299 sec	Actual Clear Time (sec) =			
		Actual Clear Time (sec) = Actual Clear Time (sec) =			
57 ≤ f < 58 F < 57	Clear Time ≥ 299 sec	Actual Clear Time (sec) =			
57 ≤ f < 58 F < 57	Clear Time ≥ 299 sec Clear Time ≤ 0.16 sec	Actual Clear Time (sec) =			
57 ≤ f < 58 F < 57 Breaker Failure	Clear Time ≥ 299 sec Clear Time ≤ 0.16 sec (required in Section 3 if using inverter s	Actual Clear Time (sec) = hut down for breaker failure)			
57 ≤ f < 58 F < 57 Breaker Failure BF Detection	Clear Time ≥ 299 sec Clear Time ≤ 0.16 sec (required in Section 3 if using inverter sec Pickup ≤ 0.3 sec	Actual Clear Time (sec) = hut down for breaker failure) Pickup =			
57 ≤ f < 58 F < 57 Breaker Failure BF Detection	Clear Time ≥ 299 sec Clear Time ≤ 0.16 sec (required in Section 3 if using inverter st Pickup ≤ 0.3 sec Clear Time ≤ 2 sec	Actual Clear Time (sec) = hut down for breaker failure) Pickup =			

Power Plant Controller (PPC)			
DER certifies that the power plant controller and all equipment in the measurement equipment, communications / signal equipment in the control loop have been tested individually and as a system.			
DER certifies system level tests performed include all required active / reactive control modes of DER-02 / CSA C22.3 No. 9 at the RPA, with all generating units included and in service.			
DER certifies that the facility has been left in power factor control mode set at the appropriate power factor setpoint. The DER confirms that the power factor specified by the PPC is the same as what was measured at the PCC relay.			

Interconnection Equipment Testing

The DER Owner is responsible for the inspection, testing, and calibration of its equipment, at the PCC / PoC. Testing shall be conducted prior to the initial energization of the facility and on a periodic basis for maintenance purposes. Review DER-02, *Section 9.0* and CSA C22.3 No. 9: 20, *Section 8.5.2.1* for inspection and testing requirements.

The following interconnection equipment at the PCC / PoC shall be included in all testing, but not limited to:

- Interrupting / Isolation devices (i.e. Breaker, Recloser, Disconnect Switch)
- Instrumentation (i.e. Current / Voltage Transformers, Sensing Devices)
- Control Wiring
- Underground Cabling
- Main Power Transformers
- Protection Function Testing
- Interconnection SCADA DNP3 Mapping: Refer to DER-02, Annex 'A' for requirements and mapping

All commissioning validation testing reports and procedures must be made available upon request from FortisAlberta.

Refer to manufacturer guidelines for equipment testing and expected values. In the absence of the manufacturer's information, use the latest industry standards for testing equipment. Indicate below the testing period and the standard(s) used for testing

Interconnection Equipment Testing					
New Commissioning		Testing Completed ≤ 3 Years		Testing Completed > 3 Years	
Testing Standard(s) Applied (i.e. NETA ATS 2017, CSA C22.3 No 9, IEEE 1547.1)					

Additional Comments / Variances:

Testing Certification

Your signature below indicates that the information that has been provided is accurate and the testing of the protection and facility equipment aligns with the requirements in FortisAlberta's DER-02 standard. It also indicates that all testing results have been documented and are available upon request by FortisAlberta.

All responsible individuals signing and stamping results for the DER owner/facility certify that the electrical protection and control system for this generating facility complies with the design and all applicable performance standards, including FortisAlberta DER-02, FortisAlberta PQ-SPEC-01 and applicable interconnection standards.

Certified by:	Reviewed by (P&C):
Power Producer (name / company)	FortisAlberta
Title (P.Eng. Required with stamp)	Title
Signature	Signature
Date	Date
Site witnessed by (Field Technical Services):	
FortisAlberta	Signature
Title	Date

FORTIS ALBERTA

REFERENCE MATERIAL

Inspections and Tests

The following are the minimum expectations for each type of inspection and test. Refer to the equipment manufacturer for recommended routine maintenance tests, if not available use the latest NETA Acceptance Testing Standard (ATS) as a reference for applicable inspections, test procedures and expected results.

End-to-End Wire Checks:

- Verify tightness of accessible bolted connections by use of a calibrated torque wrench. Use manufacturer specifications for required torque levels.
- Inspect, tug test and tighten all loose circuit wiring connections.
- Confirm each wire is terminated as indicated in vendor / engineered drawings.
- Verify end-to-end continuity.
- Verify single point grounding.
- Ensure proper phasing.

Insulation-Resistance & Dielectric Withstand Testing:

- One-minute insulation resistance on each phase. Shall include both phase-to-phase and phase-to-ground tests.
- Insulation-resistance tests shall be conducted when the breaker or isolation switch is in the closed position.
- For required test voltages and expected values refer to manufacturer data, Table 100.1 or Table 100.5 (Transformers) in NETA ATS.
- Isolation switches requiring dielectric withstand tests shall be conducted with the switch in the closed position, testing each phase, phase-to-phase and phase-to-ground. Refer to manufacturer recommendations.
- Breakers requiring dielectric withstand testing (for vacuum bottle integrity) shall be conducted across the vacuum bottle when the breaker is in the open position.

Contact Resistance Tests:

- Tests to be conducted across switchblades, fuse holders and breaker contacts in the closed position. Each phase shall be tested and compared. A low-ohm meter shall be used for each test.
- Comparing each phase, at a maximum, test values shall not differ by more than 50 percent of the lowest phase.

Breaker Timing Tests:

- Verification of when the breaker receives an open / close signal to the actual mechanical open / close of the breaker contacts.
- Test values shall reflect manufacturers specification. In the absence of manufacturer data values times shall be recorded for maintenance purposes.

Breaker / Isolation Switch Function Tests:

- Verify that breaker functions electrically via protection controller (inter-tie relay).
- Breaker open and close functions shall be verified manually by push button and/or mechanical lever.
- When applicable both the undervoltage and anti-pump functions of the breaker shall be tested.
- Manually operate switches to verify proper engagement of switchblades.

INTERCONNECTION PROTECTION SETTINGS & COMMISSIONING

Inspections and Tests Cont'd

Analog Inputs / Configuration:

- Inject voltage and current into meter inputs to ensure accuracy.
- Confirm voltage and current ratios configured directly reflect instrument ratios and system parameters.
- Verify / configure meter for event capturing that complies to 'Annex B' of FortisAlberta's *Technical Interconnection Requirements Standard* (DER-02).

Transformers

Ratio / Polarity:

- (Power) Perform turns ratio test on the nominal operating tap and for each winding. (Instrument) Perform turns ratio test on each PT and CT at the PCC.
- (Power) Ratios shall not differ by more than 0.5% on each winding pair.
- (Instrument) Ratio errors shall conform to ANSI/IEEE C57.13

Winding Resistance:

- (Power) Resistance shall be measured on both the high and low voltage windings at the operating tap.
- (Power) Temperature corrected winding resistance shall be compared within one percent of factory or previously obtained results.

Excitation Current:

- (Power) Excitation current shall be measured on both the high and low voltage windings at the nominal operating tap.
- (Power) Excitation current pattern for a 2-winding transformer shall have two similar readings and one lower current reading.
- (Instrumentation CT) Testing shall be in accordance to ANSI/IEEE C57.13.1.
- (Instrumentation CT) Excitation results shall match the curve supplied by the manufacturer or be in accordance with ANSI/IEEE C57.13.1.

Power Factor:

- (Power) Insulation Power Factor tests shall be performed on all windings of the transformer as per testing equipment manufacturers recommendation.
- (Power) Expected CHL values shall be less than:

Oil (Power) = 0.5% Dry (Power) = 2.0% Dry (Distribution) = 5.0%

• (Power) Insulation Power Factor tests shall be performed on all windings of the transformer as per testing equipment manufacturers recommendation.

Burden:

• (Instrumentation) Measured transformer burdens shall not exceed instrument transformer name-plate rating.